BDNF-promoted increases in proximal dendrites occur via CREB-dependent transcriptional regulation of cypin.
نویسندگان
چکیده
Alterations in dendrite branching and morphology are present in many neurodegenerative diseases. These variations disrupt postsynaptic transmission and affect neuronal communication. Thus, it is important to understand the molecular mechanisms that regulate dendritogenesis and how they go awry during disease states. Previously, our laboratory showed that cypin, a mammalian guanine deaminase, increases dendrite number when overexpressed and decreases dendrite number when knocked down in cultured hippocampal neurons. Here, we report that exposure to brain-derived neurotrophic factor (BDNF), an important mediator of dendrite arborization, for 72 h but not for 24 h or less increases cypin mRNA and protein levels in rat hippocampal neurons. BDNF signals through cypin to regulate dendrite number, since knocking down cypin blocks the effects of BDNF. Furthermore, BDNF increases cypin levels via mitogen-activated protein kinase and transcription-dependent signaling pathways. Moreover, the cypin promoter region contains putative conserved cAMP response element (CRE) regions, which we found can be recognized and activated by CRE-binding protein (CREB). In addition, exposure of the neurons to BDNF increased CREB binding to the cypin promoter and, in line with these data, expression of a dominant negative form of CREB blocked BDNF-promoted increases in cypin protein levels and proximal dendrite branches. Together, these studies suggest that BDNF increases neuronal cypin expression by the activation of CREB, increasing cypin transcription leading to increased protein expression, thus identifying a novel pathway by which BDNF shapes the dendrite network.
منابع مشابه
STRUCTURAL CHARACTERIZATION AND TRANSCRIPTIONAL REGULATION OF THE CYTOSOLIC PSD-95 INTERACTING PROTEIN (CYPIN) AND ITS ROLE IN NEURONAL DENDRITE BRANCHING By
Dendrite morphology regulates how a postsynaptic neuron receives information from presynaptic neurons. The specific patterning of dendrite branches is promoted by extrinsic and intrinsic factors that trigger the activation of functional signaling pathways. However, only a handful of the regulatory factors and biochemical mechanisms involved in determining dendrite morphology are known. The Fire...
متن کاملTranscriptional regulation of brain-derived neurotrophic factor in the amygdala during consolidation of fear memory.
We have demonstrated previously that brain-derived neurotrophic factor (BDNF) signaling in the amygdala is required for the consolidation of fear memory. This study is designed to characterize the signal cascades by which fear conditioning modulates transcriptional and translational expression of BDNF. Real-time reverse transcription-coupled polymerase chain reaction showed a significant increa...
متن کاملThe role of PSD-95 and cypin in morphological changes in dendrites following sublethal NMDA exposure.
Focal swelling or varicosity formation in dendrites and loss of dendritic spines are the earliest indications of glutamate-induced excitotoxicity. Although it is known that microtubule dynamics play a role in varicosity formation, very little is known about the proteins that directly impact microtubules during focal swelling and dendritic spine loss. Our laboratory has recently reported that th...
متن کاملRhoA regulates dendrite branching in hippocampal neurons by decreasing cypin protein levels.
The way a dendrite is patterned determines how a neuron will receive information. The Rho GTPases have been reported to play increasingly well defined roles in determining dendritic branch and spine development and morphology. Much is known about how these small GTPases regulate the actin cytoskeleton; however, very little is known about how they alter the microtubule cytoskeleton. Our laborato...
متن کاملNeurobiology of Disease Low-Level Laser Therapy Rescues Dendrite Atrophy via Upregulating BDNF Expression: Implications for Alzheimer’s Disease
Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer’s disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 26 شماره
صفحات -
تاریخ انتشار 2011